The weights
$$w$$
 of two-thirds of the members of a population satisfy the inequality

ANSWER:

 ≤ 1 , where w is measured in pounds. Determine the interval(s) on the real number line in which these weights lie.

$$-1 \le \frac{W-157}{20} \le 1$$

 $-20 \le W-157 \le 20$
 $137 \le W \le 177$

 $(-x)^2y = 4$ $x^2y = 4$

[2] Determine algebraically if the graph of
$$x^2y = 4$$
 is symmetric over the $y - axis$.

ANSWER:

[3] Find the domain of the function
$$h(x) = \sqrt{5-7x}$$
.

ANSWER:
$$\left\{ \begin{array}{c} \left\{ \times \leq \frac{5}{7} \right\} \\ OR \\ \left(-\infty, \frac{5}{7} \right] \end{array} \right\}$$

[4] Find the
$$x$$
 – intercepts of the function $g(x) = 9x^2 - 3x - 1$.

$$9 \times ^{2} - 3 \times -1 = 0$$

 $\times = 3 \pm \sqrt{9 + 36}$
 $= 3 \pm \sqrt{45}$
 $= 3 \pm 3\sqrt{5} = 1 \pm \sqrt{5}$

ANSWER:

[5]	The cost C in dollars of producing n computer laptop bags is given by $C = 1.25n + 15,750$. Explain what the C – intercept and slope measure.
	ANSWER: THE C-INTERCEPT IS THE FIXED COST IF NO BAGS
	ARE PRODUCED. THE SLOPE IS THE COST OF PRODUCING
	LEACH BAG.
	$\left\{2\times17\times2\right\}$
[6]	Evaluate $p(x) = \begin{cases} 2x + 7, & x \le -1 \\ 3 - 2x^2, -1 < x \le 3 \text{ at each specified value of the independent variable below.} \\ 1 - x^2, & x > 3 \end{cases}$
	$1-x^2, x>3$
	ANSWER: 3
[7]	If $f(x) = 2x^2 - x$, find the difference quotient $\frac{f(x+h) - f(x)}{h}$. ANSWER:
	$\frac{2(x+h)^2-(x+h)-(2x^2-x)}{h}$
((2) h
	$-2/\sqrt{2}$ $-2/2$ $-2/2$ $-2/2$

$$-6y = -4x - 5$$
 $9 = \frac{3}{3}x + \frac{5}{5}$
 $1 = \frac{3}{2}$

[9] Solve
$$\frac{1}{x-4} - \frac{2}{x+2} = \frac{6}{x^2 - 2x - 8}$$
. LCD = $(x-4)(x+2)$ ANSWER: NO SOLUTION
$$\begin{array}{c} x+2-2(x-4)=6 \\ x+2-2x+8=6 \\ -x=-4 \end{array}$$

$$\begin{array}{c} x=4 \\ x=4 \end{array} \longrightarrow \text{MARKES } 1^{ST} \text{ DENOMINATOR} = 0$$